

Lecture 5 - Fundamental Theorem for Line Integrals and Green's Theorem

Math 392, section C

September 14, 2016

Last Time: *Fundamental Theorem for Line Integrals:*

Last Time: Fundamental Theorem for Line Integrals:

Theorem

Let C be a smooth curve, parametrized by $\vec{r}(t)$, $t \in [a, b]$.

Let f be a smooth function. Then

$$\int_C \vec{\nabla} f \circ d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a)).$$

$$\vec{F} = \vec{\nabla} f$$

So, if a vector field is conservative, calculating line integrals is very simple.

So, if a vector field is conservative, calculating line integrals is very simple.

Question: When is \vec{F} conservative?

So, if a vector field is conservative, calculating line integrals is very simple.

Question: When is \vec{F} conservative?

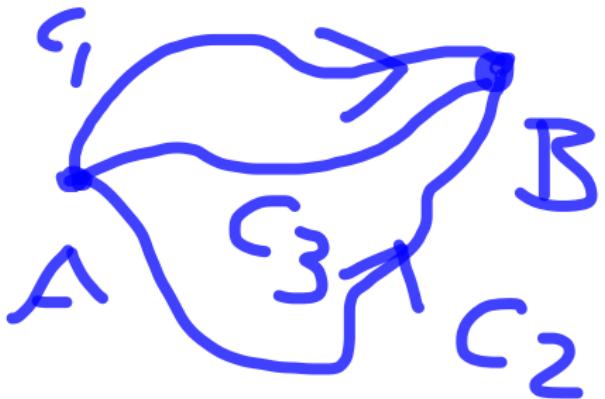
Theorem

Let \vec{F} be a continuous vector field on an open, connected region D .
If $\int_C \vec{F} \circ d\vec{r}$ is independent of path, then \vec{F} is conservative.



Definition

We say that $\int_C \vec{F} \circ d\vec{r}$ is **independent of path** whenever the value of this line integral is the same for any two paths with the same endpoints.



$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

For any C_1, C_2, A, B

Definition

We say that $\int_C \vec{F} \circ d\vec{r}$ is **independent of path** whenever the value of this line integral is the same for any two paths with the same endpoints.

Criterion to decide whether \vec{F} is conservative

blue : 3D Case

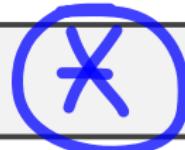
If we knew that

$$\vec{F} = (P, Q) = \vec{\nabla}f$$

$$\vec{F} = (P, Q, R)$$

for some twice differentiable function f , then

$$P_y = f_{xy} = \underline{f_{yx}} = Q_x$$



$$P_z = f_{xz} = f_{zx} = R_x$$

$$Q_z = f_{yz} = f_{zy} = R_y$$

Criterion to decide whether \vec{F} is conservative

If we **knew** that

$$\vec{F} = (P, Q) = \vec{\nabla}f$$

for some twice differentiable function f , then

$$P_y = f_{xy} = f_{yx} = Q_x$$

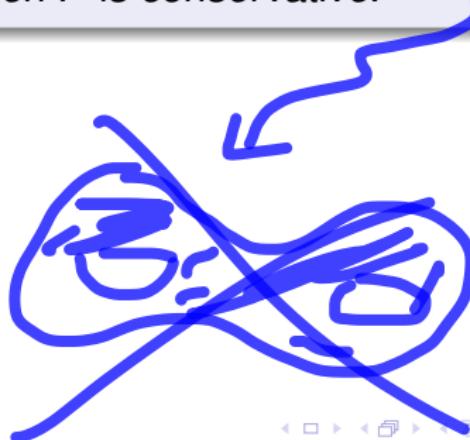
So, this is a necessary condition for a vector field to be conservative.

Criterion to decide whether \vec{F} is conservative

Proof: Green's Thm

Theorem

If $\vec{F}(x, y) = (P(x, y), Q(x, y))$ is defined on an open, simply-connected region D , and $P_y = Q_x$ on D , then \vec{F} is conservative.



Exercise 11 , Section 3.3:

Find the work done by $\vec{F} = (x^3y^4, x^4y^3)$ to move a particle along the curve C , parametrized by $\vec{r}(t) = (\sqrt{t}, 1 + t^3)$, $t \in [0, 1]$.

Step 0: check if \vec{F} is cons.

$$P_y = 4x^3y^3 \quad \left. \begin{array}{l} \\ \end{array} \right\} \vec{F} \text{ is cons.} !!$$

$$Q_x = 4x^3y^3 \quad \left. \begin{array}{l} \\ \end{array} \right\} \boxed{\vec{F}(0) = (0, 1), \vec{F}(1) = (1, 2)}$$

Step 2: Find potential f .

$$f_x = x^3 y^4$$

$$f_y = x^4 y^3$$

$\int f_x$

$$f = \frac{x^4 y^4}{4} + g(y)$$

$$\Rightarrow f(x, y) = \frac{x^4 y^4}{4} + k$$

$$\int_C \vec{F} \cdot d\vec{r} = f(\vec{r}(1)) - f(\vec{r}(0)) = \frac{f(1, 2) - f(0, 1)}{4}$$

Exercise 20 , Section 3.3:

Find the work done by $\vec{F} = (e^{-y}, -xe^{-y})$ to move a particle from $(0, 1)$ to $(2, 0)$.

Cons? $P_y = -e^{-y}$] $\Rightarrow \vec{F}$ cons.

$$Q_x = -e^{-y}$$

Find potential:

$$f_x = e^y (= P)$$

$$f = x e^{-y} + g(y)$$

$$f_y = -x e^{-y} + g' = -x e^{-y} + (-x)$$

$$\Rightarrow g' = 0 \Rightarrow g(y) = K$$

$$\Rightarrow f(x, y) = x e^{-y} + K$$

$$\int_C \vec{F} \cdot d\vec{r} = f(2, 0) - f(0, 1)$$
$$= \dots$$

Exercise 31 , Section 3.3:

Let

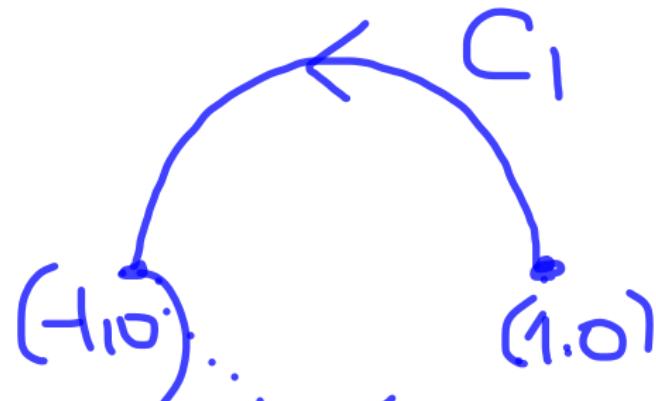
$$\vec{F} = \frac{(-y, x)}{x^2 + y^2} = 1$$

Show that \vec{F} satisfies $P_y = Q_x$, and that the values of the line integrals of \vec{F} along the upper and lower hemispheres, joining the points $(1, 0)$ to $(-1, 0)$, are different.

$$P_y = \frac{d}{dy} \left(\frac{-1}{x^2 + y^2} \right) = \frac{-1 \cdot (x^2 + y^2) + y \cdot 2y}{(x^2 + y^2)^2}$$

$$Q_x = \frac{d}{dx} \left(\frac{x}{x^2 + y^2} \right) = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$\int_C \vec{F} \cdot d\vec{r}$$



Param C_1 : $\vec{r}(t) = (\cos t, \sin t)$, $t \in [0, \pi]$

$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_0^\pi (-\sin t, \cos t) \cdot (-\sin t, \cos t) dt$$

$$= \int_0^\pi 1 dt = \pi$$

Param C_2 :

$$\begin{aligned}\Gamma(t) &= (\cos(-t), \sin(-t)), t \in [0, \pi] \\ &= (\cos t, -\sin t), t \in [0, \pi].\end{aligned}$$

$$\begin{aligned}\int_{C_2} \vec{F} \cdot d\vec{r} &= \int_0^\pi (\sin t, \cos t) \cdot (-\sin t, -\cos t) dt \\ &= \int_0^\pi -1 dt = -\pi\end{aligned}$$

Green's Theorem

Let C be a simple, **closed** curve on the plane, that bounds a region D . Assume also that C is oriented **counterclockwise**¹.

If P and Q have continuous partial derivatives on an open region containing D , then

$$\oint_C P dx + Q dy = \iint_D (Q_x - P_y) dA$$

¹Counterclockwise orientation will be called the *positive orientation*

Green's Theorem

Let C be a simple, **closed** curve on the plane, that bounds a region D . Assume also that C is oriented **counterclockwise**¹.

If P and Q have continuous partial derivatives on an open region containing D , then

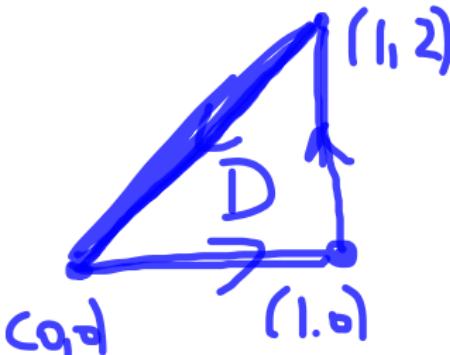
$$\text{closed} \rightarrow \oint_C Pdx + Qdy = \iint_D (Q_x - P_y) dA$$

We will prove this theorem next class. Right now, we will work on how to use the theorem.

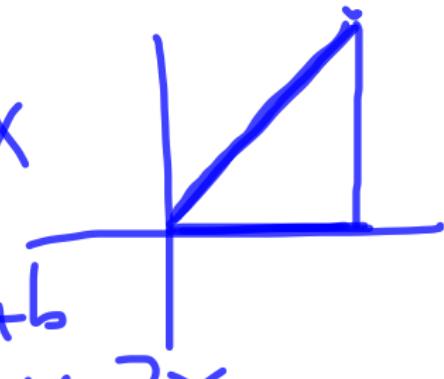
¹Counterclockwise orientation will be called the *positive orientation*

Example: Exercise 3, Section 3.4

Evaluate $\oint_C xydx + x^2y^3dy$, where C is the triangle with vertices $(0, 0)$, $(1, 0)$ and $(1, 2)$, oriented counterclockwise.



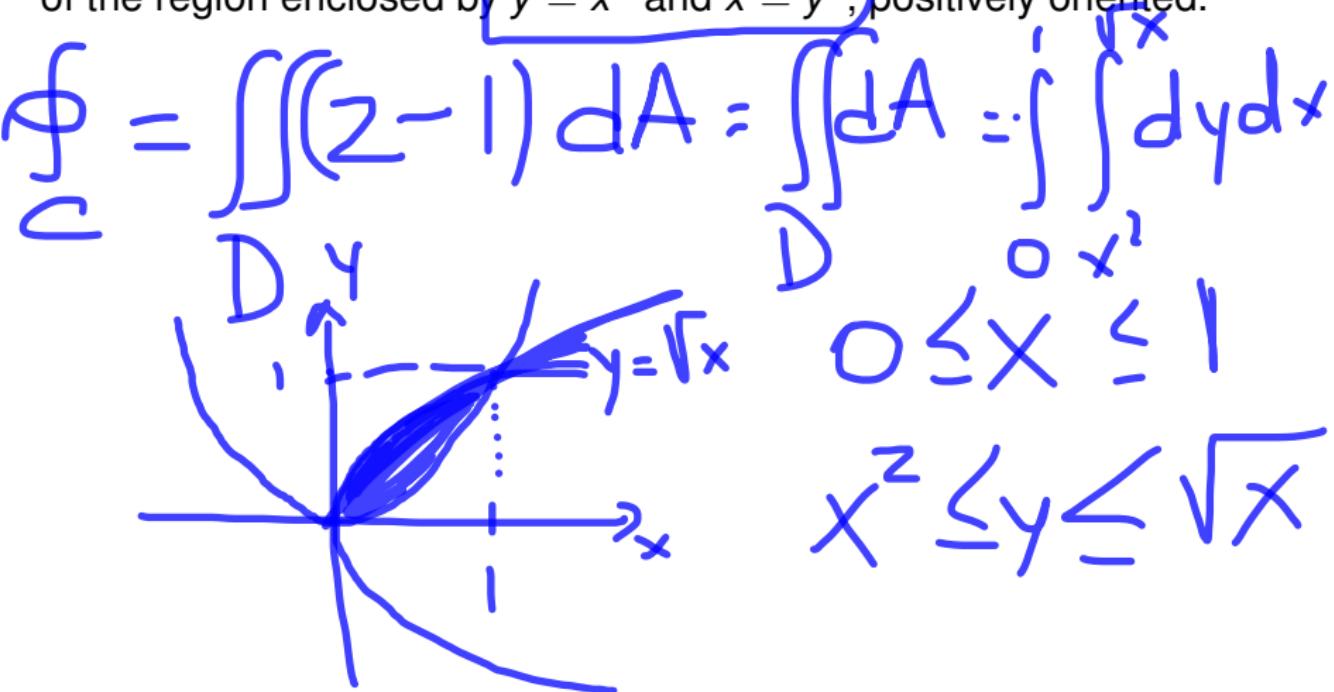
$$\begin{aligned}\oint_C Pdx + Qdy &= \iint_D (Q_x - P_y) dA \\ &= \iint_D (2x^3 - x) dA = \int_0^1 \int_0^{2x} (2x^3 - x) dy dx \quad \text{PTU} \\ D: 0 \leq x \leq 1, \quad 0 \leq y \leq 2x\end{aligned}$$

$$\begin{aligned}
 & \int_0^1 \int_0^{2x} (6xy^3 - x) dy dx \\
 &= \int_0^1 \int_0^{2x} (6xy^3 - x) dy dx \\
 & \quad y = mx + b \\
 & \quad \Rightarrow y = 2x
 \end{aligned}$$


Moral: See if you can use Green when asked for a line int along a simple, **CLOSED** curve.

Example: Exercise 9, Section 3.4

Evaluate $\oint_C (y + e^{\sqrt{x}})dx + (2x + \cos(y^2))dy$, where C is the boundary of the region enclosed by $y = x^2$ and $x = y^2$, positively oriented.



Example: Exercise 17, Section 3.4

Find the work done by $\vec{F} = (x^2 + xy, xy^2)$ to move a particle from the origin along the x -axis to $(1, 0)$, then along a straight line to $(0, 1)$, and then back to the origin, vertically.

Example/Application

If \vec{F} is such that $Q_x - P_y = 1$ (for example, if $P = -y$ and $Q = 0$, or if $Q = x$ and $P = 0$, or even if $P = -\frac{1}{2}y$ and $Q = \frac{1}{2}x$, then

$$\text{Area } (D) = \iint_D 1 dA$$

Example/Application

If \vec{F} is such that $Q_x - P_y = 1$ (for example, if $P = -y$ and $Q = 0$, or if $Q = x$ and $P = 0$, or even if $P = -\frac{1}{2}y$ and $Q = \frac{1}{2}x$, then

$$\text{Area } (D) = \iint_D 1 dA = \oint_C x dy$$

Example/Application

If \vec{F} is such that $Q_x - P_y = 1$ (for example, if $P = -y$ and $Q = 0$, or if $Q = x$ and $P = 0$, or even if $P = -\frac{1}{2}y$ and $Q = \frac{1}{2}x$, then

$$\text{Area } (D) = \iint_D 1 dA = \oint_C x dy = - \oint_C y dx$$

Example/Application

If \vec{F} is such that $Q_x - P_y = 1$ (for example, if $P = -y$ and $Q = 0$, or if $Q = x$ and $P = 0$, or even if $P = -\frac{1}{2}y$ and $Q = \frac{1}{2}x$, then

$$\text{Area } (D) = \iint_D 1 dA = \oint_C x dy = - \oint_C y dx = \frac{1}{2} \oint_C x dy - y dx$$

Example:

Find the area of the ellipse $(bx)^2 + (ay)^2 = (ab)^2$