Lecture 5 - Fundamental Theorem for Line
Integrals and Green’s Theorem
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Last Time: Fundamental Theorem for Line Integrals:
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Last Time: Fundamental Theorem for Line Integrals:

Theorem

Let C be a smooth curve, parametrized by r(t), t € [a, b].

Let f be a smooth function. Then

Vi dF = f(F(b)) — f(7(a)).
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So, if a vector field is conservative, calculating line integrals is very
simple.
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So, if a vector field is conservative, calculating line integrals is very
simple.

Question: When is F conservative?
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So, if a vector field is conservative, calculating line integrals is very
simple.

Question: When is F conservative?
Theorem

Let IE' be a continuous vector field on an n, connected region D.
If [ F o dF is independent of path, th@ conservative.
©

V-
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Definition
We say that [ F o d7 is independent of path whenever the value of

c
this line integral is the same for any two paths with the same endpoints.

‘i R ;F.dr ;J‘Fclv
A \ 'Y

Ca For any (& .C2 5 R
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Definition
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Criterion to decide whether F is conservative

Live. =2Dbn\=

If we k that I
we Knew tha F=(P,Q)=Vf F: (?IQR\

for some twice differentiable function f, then

Py—fxy—fyx—ox @)
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Criterion to decide whether F is conservative

If we knew that . B
F=(P,Q)=Vf

for some twice differentiable function f, then

Py = fiy = fx = Qy

So, this is a necessary condition for a vector field to be conservative.
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Criterion to decide whether F is conservative

[- Pnoc,( Geanls Thw

Theorem

IfF(x,y) = (P(x,y),Q(x,y)) is defined on an open, ‘s:mply—connected n
region D, an- on D, then F is conservative.
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Exercise 11, Section 3,3:
Find the work done by F x*y3) to move a particle along the
(

curve C, parametrized by rt®=(\/t,1 + ), tg [0,1].

Siey0: Cheek 1 + i>aons.
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Exercise 20 , Se non 3.3
Find the work done by|F —xe ") tAmove a partlcl)e from (0,1)

to ( 2:\) T __> .
Cons '2" -ee 7} +aon
Tind porertial

£ =& =P
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D LaY): xe+ s
T.4< = $(z,0) - flon)

(- =



Exercise 31 , Section 3.3:
Let

Show that F satisfiesn e values of the line integrals
of Falong the upper amatower hemispheres, joining the points (1,0)

—1,0), are different.
_ =1 6D+

d
P 3( 6@\1)1

Qo)
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Green’s Theorem @

Let C be a simple, closed curve on the plane, that bounds a region D.
Assume also that C is oriented counterclockwise'.

If P and Q have continuous partial derivatives on an open region
containing D, then

jq{deJery://(Qx—Py)dA
C D

— C

Counterclockwise orientation will be called the positive-orientation
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Green’s Theorem

Let C be a simple, closed curve on the plane, that bounds a region D.
Assume also that C is oriented counterclockwise'.

If P and Q have continuous partial derivatives on an open region
containing D, then

C\i}’g (Z{JDdXJerYé/(QxPy)dA

We will prove this theorem next class. Right now, we will work on how
to use the theorem.

Counterclockwise orientation will be called the positive-orientation
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Example: Exercise 3, Section 3.4
Evaluate 39 xydx + x2 y3dy where C is the triangle with vertices

(0,0),(1, O) and (1, 2), oriented counterclockwise.

3 j(;PAH By ﬂ@ Py )dA

D! 2X

cod (1 gféz)q A J-f ?m

D - O<x4\ <\I <Z.X
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Example: Exercise 9,_Sectior
Evaluate §(y + e¥*)dx + w dy where C is the boundary
‘J

{x o4>< <‘
X &y LK
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Example: Exercise 17, Section 3.4

Find the work done by F = (x? + xy, xy?) to move a particle from the

origin along the x-axis to (1,0), then along a straight line to (0, 1), and
then back to the origin, vertically.
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Example/Application

If F is such that Qy — Py, =1 (for example, if P = —y and Q = 0, or if
Q=xand P=0,orevenif P=—Jyand Q= Jx, then

Area (D) = [[ 1dA
D
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Example/Application

If F is such that Qy — Py, =1 (for example, if P = —y and Q = 0, or if
Q=xand P=0,orevenif P=—}yand Q= }x, then

Area (D) = [[1dA = § xdy= — § ydx=} § xdy — ydx
D c c c
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Example:

Find the area of the ellipse (bx)? + (ay)? = (ab)?
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